
Math Logic: Model Theory & Computability
Lecture 12

Downward Lowenheim-Skolem Cases Axiom of Choice). For each E-structure B and ScB
,

there is AGI containing S such But IA) < maxKo
,
KS >3)) < max/ISI , It1, No).

A conceptual way to prove his , uses the following concept :

Def . Let B be a testructure and Y(, ) be an extended -- formula. A

Sholem Function for Y, y) is a function Sp : B* -> B such that

Preach EEB
,
if BF EyY(5, g) then BEY15

,
S15I)

.

In ofer

words
,
Sy(5) is a choice of a witmen for Egl/5 , 3) if it holds .

ASkolemization of B is an expansion I to a E-structure
,
where

F : = TU >fen: Y (2 , 3) is an extended -formula) and fecis) has

crity (i)
,
and the interpretation of faci,s) in I is a skolem

function for 4(E
, 3) .

Lemma
.

Let B be a r-structure and let I be a skolenization of E
in the skolemized signite i as in the above def)

.

The reduct A of any
substructure C to ainstructure is

on elementer substrucke of B ,
Proof

. Let A be as described and deck that it satisfies the Tarcki-

Vaught best : for each extended --formula 4(*
, 3) and GAI

,

if BFEgY)a , 3) ten &FYI , Fox)) for the corresponding
Sholen function symbol fess ,) in But beare A is a reduct

&
-

-

of a E-substructure of B .

A is closed under all functions
e

of B
,
in particular , fas, (a) EA .

Thus
,
A passes the Tarski-

Vaught test ,



Downward Lowenheim-Skolem Cases Axiom of Choice). For each E-structure B and ScB
,

there is AGI containing S such But IA) => max/1s1
,
151
,
No)

.

Proof. Let i be a Skolemization of 1 (this uses axion of choice
-

to define each Skolem function)
.

Let be the substructure of

generated by S
,
and let A be the reduct of to a structure.

Then AsS and AGL by the previous lemna . Morever ,
1A) = / < S <3) = max (13) , 181 , Mo) but 18) < /01 + /Formulas(d)

and /Formulas (t)) < /UAlph(d)Y) - max(12) , (o) , so 1812 Hltucx

11
,
<0) = max (H ,No) ,

N hence (A) < max (13)
,
10)
,
(o)

.

Exercise . In fact
,

A = Va ,
where 30 := S and Sati= V fE/Sh .

4(i,y)

Cor (weak downward Lowenheim-Skolem). If a T-lory T is satisfiable
,
than it has a model

of cardinality -> max(1 +1 , No) (hence utbl if wis ctl) .
Proof

. Let BET and let AG& be an elementary substructure (containing S:=) of cardinality maxlld
,
No).

Examples . (d) Let E := (12 ,
0
,

1
, +,

·

,
2) then Th(1) has ctbl models.

It follows from Tarski's quantifier elimination theorem for I that

the substructure of algebraic reals is a ctbl model of Th(I)
.

(b) Skolen "paradox". If EFC is satisfiable
,
then it has etl models.



What about the converse to downward Lorenheim-Sholem or even just
its corollary .

Given a destructure A is there an elementary extension

BEA of higher cardinality RacIAl ? In particular, does a satisfickle

they have models of arbitrarily large cardinality ?
All these questions and more are answered b the most useful know

rem of logic , namely , the Compartmen Mem.

Compactness Thrum and its mutter applications.

Det
.

A Others T is called finitely satisfiable if every finite subtery To &T is
satisfiable (i. e. has a modell.

Compartmen theorem (Malcer
,
Godel). Every finitely satisfiable -theogT is satisfiable.

Malver proved this purely model-theretically , using ultraproducts , and bodel
proved his as a consequence of his Completeness Meorem I= semantic - syne
tactic duality) .

Cor1
. Let ↑ be a i-theory andU be a resentence. If TFY then To El for some

finite subthery To &T.

Proof. We prove the contrapositive : suppose
To# fr all Limite To &T

.

enszehrtisfinitelysatishableincludbr everyzieawen,
3743 UT has a model

,
10 TH Y .

Cor2 (from Cort). Every finitely axiomatizableRery T admits a finite

axiomatization To &T .

Proof. HW.



Examples .
(a) The thery To : = <Ex ....Exn(1xi #xj) : neNth isn't finitely

axiomatizable
.

kiju

(b) The clan of bipartite graphs isn't finitely axiomatizable
.

HI


